Brake disc surface temperature measurement using a fiber optic two-color pyrometer

by J. Thevenet*, M. Siroux* and B. Desmet*

(2)

*Laboratoire de Mécanique Energétique – Université de Valenciennes et du Hainaut –Cambrésis, Le Mont Houy 59313 Valenciennes Cedex 9, France

Abstract

A fiber optic two-color pyrometer was developed for brake disc surface temperature measurement. The two-color pyrometer is composed of a fluoride glass fiber and two HgCdTe detectors equipped with bandwidth filters. The two-color pyrometer allows the measurement of brake disc temperature in the 200-800 °C range with a time resolution above 8 µs. Calibration formula for the signals obtained using a blackbody of known temperature are used to compute the true temperature of a known temperature target.

Introduction 1.

The determination of the surface temperature of a brake disc requires radiometric techniques with a low response time under 1 ms. One of the most important parameters that influences the radiometric measurement during braking is the brake disc emissivity, which varies during braking. In this paper, a low response time twocolor pyrometer is presented, which make possible to reduce errors in brake disc temperature measurement caused by emissivity variations during braking.

Principle of the method 2.

The theory of two-color pyrometry is given in several references [1,2,3,4]. This method uses an approximation of the Planck's law [1, 5, 6, 7]: (1)

$$L_{\lambda} = \varepsilon \cdot C_1 \cdot \lambda^{-5} \cdot \exp(-C_2 / \lambda T)$$

 $C_1=3.74\times10^{-16}$ W.m² : $C_2=1.44\times10^{-2}$ K.m

 λ : wavelength (µm) ; T: temperature (K) ; ϵ : emissivity.

The two-color pyrometry method measures the infrared luminance at two different wavelengths λ_1 and λ_2 . Assuming that the emissivity remains constant between λ_1 and λ_2 , (grey body behaviour) the voltage ratio $R=S_1/S_2$ from the wavelength outputs S_1 and S_2 is used to determine the target temperature T:

$$T = \left[C_2 \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) \right] / \ln \left(S_{\lambda_1} / S_{\lambda_2} \cdot A_{\lambda_2} / A_{\lambda_1} \cdot \left(\frac{\lambda_1}{\lambda_2} \right)^5 \right)$$

 A_{λ} : Apparatus constant of each detector

The assumption of the grey body behaviour becomes more valid as $\Delta\lambda = \lambda_1 - \lambda_2 \rightarrow 0$ but as $\Delta\lambda \rightarrow 0$ the measurement errors become more significant [1, 7]. Increasing the separation of the wavelengths reduces the effects of the luminance measurements errors. Therefore, we can determine two optimal wavelengths by studying the relative temperature uncertainty:

$$\Delta T/T = K \cdot \Delta S/S \tag{3}$$

where $\Delta S/S$ is the relative uncertainty on the wavelengths outputs and K a constant which depends on λ_1, λ_2, T and constant characteristic of detector. For one temperature, we can draw the curves of constant value of K in the space λ_1 , λ_2 (fig. 1). The wavelengths chosen in these study are 2.55 μ m and 3.9 μ m, leaving to K= 1.308.

The two-color pyrometer presented in this study is composed of a fluoride glass fiber and two HgCdTe detectors equipped with bandwidth filters (see table 1).

3. Results

The two-color pyrometer was calibrated using a blackbody cavity AGEMA (emissivity =0.99±0.1). The target temperature is obtained as a function of the voltage ratio $R = S_1/S_2$ from the wavelength outputs S_1 and S_2 . Figure 3 shows the data points acquired from the blackbody calibration and the exponential calibration curve.

To validate the two-color pyrometer, tests were carried out on a disc covered with a black paint. (ϵ =0.93±0.2). The surface temperature is measured using a K-type thermocouple. A good correlation between thermocouple and pyrometer results was obtained (fig. 4).

4. Conclusion

A two-color pyrometer with a low response time was developed that allows the brake disc surface temperature measurement of unknown emissivity. The two-color pyrometer was calibrated using a blackbody cavity. Test were carried out on a known temperature target and good correlation between thermocouple and pyrometer results was obtained. Surface temperature measurements of rotating disc are under investigation.

REFERENCES

[1] F.Cabannes. Température de surface: Mesure radiative, Techniques de l'ingénieur, R 2735 (1996)

- [2] R.Komanduri, and Z.B.Hou. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing process and tribology, *Tribology International*, 34 (2001) 653-682.
- [3] B.Müller, and U.Renz. Time resolved temperature measurements in manufacturing, *Measurements*, 34 (2003) 363-370.
- [4] P.Ferdinand. Thermomètres à fibre optique sans contact : pyromètres, *Techniques de l'ingénieur*, R2801 (2003)
- [5] T.Borca-Tasciuc, and G. Chen. Temperature measurement of fine wires by photothermal radiometry, *Rev. Sci. Intrument.*, 68 n°11 (1997) 4080-4083.
- [6] P.Hervé. Mesure de l'émissivité thermique, Techniques de l'ingénieur, R 2737 (1989)
- [7] S.Lefèvre. Métrologie thermique adaptée à un dispositif de freinage ferroviaire, *Rapport de Post Doctorat,* (2006)

Table 1. Characteristic of the two-color device

	Fluoride Glass
Optical Fiber	Spectral range: 0.5-4 µm
	Attenuation for 4 µm: 0.3 dB/m
	Length: 1m
	Transmittivity: 0.85
	Detector HgCdTe
Detectors	1mmx1mm
	Time response: <2µs
	Bandwith Filter
IR Filters	Filter 1 central wavelength: 2.55 µm±2%
	Filter 2 central wavelength: 3.9 µm±2%
	Transmittivity: 0.7

Fig. 1. "Iso-K" curves in the space (λ_1, λ_2)

Fig. 2. Experimental device

Fig. 3. Calibration Curve

Fig. 4. Experimental Results